How \hbar distinguish between localised and delocalised states?
Consider $\quad I_{q}=\int|\psi(F)|^{29} d \vec{F}$ in a finite system -inverse participation ratio (iPR)
If the state is extended, $\psi \sim \frac{1}{L^{\frac{d}{2}}}$ Then $I_{q} \sim L^{d} \cdot L^{-d q} \sim L^{-d(q-1)}$
However, if the state is localised, then $I_{q} \sim \xi^{-A(q-1)}$, where ξ is the localisation
There is another possibility: $(q-1)-\Delta q$
fractal states: $I_{q} \sim L^{-d(q-1)-\Delta_{q}}$

$$
I_{q} \sim\left\{\begin{array}{cl}
L^{-d(q-1)}, & \text { extended state } \\
L^{-d(q-1)-\Delta,}, & \text { fractal state } \\
L^{0}, & \text { localised }
\end{array}\right.
$$

Non-linear $\Delta_{q}=$ multifractal states
Multitractal states occur at the metalinsulator transition

